
A0-A093 568 WISCONSIN UN! A-MADISON MATHEMATICS RESEARCH CENTER FIG 12/1

XTREMAL POLYNOMIALS WITH APPLICATION TO RICHARDSON ITERATION F--ETC(U)

AUG so C DE BOOR, J R RICE OAAG29 80 C 0041

UNCLASSIFIED MRCTSR-21D7

~~ ~mEND~hmEEE~h~hhhhhE
*soonf-2



MRC Technical Summary Report # 2107

EXTREMAL POLYNOMIALS WITH APPLICATION
TO RICHARDSON ITERATION FOR INDEFINITE

* LINEAR SYSTEMS

F Carl de Boor and John R. Rice

1EVE1
Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street r.
Madison, Wisconsin 53706 ISM

August 1980 .~

>J~
Qbived June 6, 1980

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina, 27709

80 io 2 2 063



UNIVERSITY OF WISCONSIN - MADISON 7 ,' (
MATHEMATICS RESEARCH CENTER

EXTREMAL POLYNOMIALS WITH PPLICATION TO RICHARDSON ITERATION

FOR INDEFINITE LINEAR ,YSTEMS#

Carl/"de Boor John R./Rice

STechnical summary Reptif 2107

'' "# ". 7 4--R'? @ABSTRACT

The application of Richardson iteration to a symmetric, but indefinite

linear system requires certain parameters which can be determined from the

zeros in the error of a certain best polynomial approximant on some set S

known to contain the spectrum of the coefficient matrix. It is pointed out

that this error can also be obtained as a multiple of the extremal polynomial

for the linear functional p - p(O), and this leads to an efficient Remes

type algorithm for its determination. A program incorporating this algorithm

for the case that S consists of two intervals bracketing zero is also given.
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SIGNFICANCE AND EXPLANATION

Sparse symmetric (positive) definite linear systems occur in various

problems, chief ly in the construction of least-squares approximations and in

the solution of elliptic partial differential equations. They are most

advantageously solved by the conjugate gradient method. But this method may

break down if the system fails to be definite, as it might be if constraints

are added to the least-squares problem or standard conditions on the lover

order terms in the elliptic PDE are relaxed. In such a case, Richardson

iteration offers a possibly attractive alternative. This iteration method

requires knowledge of some set S certain to contain the spectrum of the

coefficient matrix of the linear system and this can often be supplied. In

addition, it requires knowledge of the polynomial of smallest size on S

which has a given degree and takes the value 1 at 0 . If S lies to one

side of 0 , then this polynomial is just the Chebyshev polynomial for S

(normalized to have value 1 at 0) . But, in the indefinite case, the

Chebyshev polynomial will not do.

V The present report presents a novel characterization of the needed

polynomial, an efficient algorithm for its construction and, for the case

that S consists of two intervals, a Fortran program based on it for the A' . ~~

determination of the iteration parameters for Richardson iteration.

K.
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EXTREMAL POLYNOMIALS WITH APPLICATION TO RICHARDSON ITERATION

FOR INDEFINITE LINEAR SYSTEMS

Carl de Boor and John R. Rice

1. The iteration problem Consider the linear system of equations Ax = b and the

iteration

n+1 n (Axnx =x -a -b)
n

With e x - x the error in the n-th iterate, we have

n In

e (1-a= ... = 17 (1-aj_lA) e = Qn (A)e0jni1n

where Qn is the polynomial of degree n which vanishes at 1/a, ... /a and is

I at 0 . This is Richardson's (first order) iteration, with iteration parameters a.. If

the spectrum of A is known to lie in some compact set S , then a standard analysis

suggests that one should choose the parameters a. so as to minimize3

Qmax IQ(s)I
n S nss n

The resulting polynomial Pn is then the error in the best Chebyshev approximation on S

to 1 from {jn , 1t
3
} . If S is an interval not containing the origin (hence A is

3=1

known to be definite), then it is well known that a renormalization of Pn to make the

coefficient of tn equal to I gives Tn , the Chebyshev polynomial for the interval S

For this case, the three-term recurrence relation for the Chehyshev polynomials may he

employed to build up xn without the use of the zeros of Pn . This has the advantaqe

that the iterates x
i  

so generated along the way are themselves using Pi " This method is

known as the Chebyshev semi-iterative method . This variation requires some more memory (3

vectors rather than 2 are used) and more computation per step (since more vectors are

combined per step). The conjugate gradient method is a further variation which, with some

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
The second author was also partially supported by National Science Foundation
rrant MCS 77-01408.
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more work per iteration, removes the dependence on the interval S the mere knowledge

that such an interval exists suffices to show that the error produced at the n-th step is

of the form Pn
e0 

with P. the error in a best approximation to 1 on the spectrum of

A itself.

The con)ugate gradient method may run into difficulties when A , though symmetric and

invertible, is not definite. See Paige and Saunders [1975) for a detailed discussion and

some remedies. For this reason, Richardson iteration becomes an attractive alternative in

this cas-. We now have the snectrum of A contained in two intervals, with the origin

between them. Akhiezer [19281 determined the Chebyshev polynomials for two such intervals

of equal length and Lebedev [19691 extended this technique to a set S consisting of an

arbitrary number of intervals of equal length and applied his result to iteration. See

Anderssen and Golub [1972) for a translation of Lebedev's paper and further discussions,

particularly on the important subject of the order in which best to use the a. 's1

Specifically, let S 
=

[a,b] [c,d] . For certain values of a, b, c and d, Atlestam

(19771 has obtained a representation of the Chebyshev polynomials for S , of the

following form: Let

with:1t c c
1(t) : f (u-r)p(u)du , r :: f up(u)du / f p(u)du

a b b

and

p(U) := ((u-a)(u-b)u-c)(d-u)j'J/

If th,,re are integers m and k so that I(b) = ks/m , then Q is a polynomial of

ieqree m proportional to the Chebyshev polynomial for S . Atlestam further shows that,

for any interval pair q, the Chebyshev polynomial is of this form but for a slightly

difforent pair of intervals, and this difference goes to zero as the degree goes to

infinity. er arguments can be usPed to show that in the same way, for any interval pair

backetinq the origin, the best polynomial Pn is of the above form, but for a slightly

]iff, reot irit, rval pair. Thes.' results can he used to obtain sharp asymptotic results on
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the degree of convergence of the iteration method, but it is not clear how useful the

representation is for obtaining the necessary iteration parameters.

In the present paper, we give what we feel is a more useful formulation of the

mathematical problem underlying the determination of the parameters; well known results

then establish existence and uniqueness of the solution of this problem and characterize

it. In particular, we are led to a Remes type algorithm for the determination of Pn

whose zeros can then be determined efficiently by the Modified Regula Falsi. For the

particular case that S is an interval pair, we present some numerical results to

illustrate the nature of the parameters and the convergence rate of the corresponding

iteration. In an appendix, we list a Fortran program (written by Frederick Sauer) which

produces the iteration parameters when supplied with the two intervals and the desired

polynomial degree.

2. The extremal polynomial The papers mentioned above all use Chebyshev polynomials

in some essential way, so we first note that, in general, the required polynomial Pn is

unrelated to the Chebyshev polynomial Tn  for S . This is seen in the analysis of

Atlestam [19771 or, more directly, from the fact shown below that Pn alternates one less

time on S than does Tn

To recall, the Chebyshev polynomial Tn  for the compact set S is the polynomial of

the form t
n 

+ n-1 8 tj which is as small as possible on S . In other words, Tn is the5j=O 3

error in the best approximation on S to tn from {,n-1 tj} . By contrast, we are

interested in the polynomial Pn which is the error in the best approximation on S to

I from (Zn .t
j
)

we now reformulate this problem as follows. Let X be the linear functional on Sn

(:= the polynomials of degree n or less) whose value at p is p(O) . In symbols,

X : V -- R p -- p (nl)n

An extremal for A is any polynomial of norm 1 at which A takes on its norm, i.e.,

any P 'n with lp1 iS = 1 and Ap = IIl . Here

p11p 11= l l = max Ip( s)
S

so.s
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and

:= max A , I/ min{ EpHs  p p(O) = 1)
pC ' S S n

n 
i

This shows that the polynomial Pn which is of minimum norm on S and satisfies (0) =

1 is a multiple of an extremal p* for A , i.e., Pn p/p*(O)

The standard approach to the construction of extremals is via norm preserving

extensions, i.e., via a socalled canonical representation for A (see, e.g., Rivlin [1974;

pp.82ff]). Such a canonical represemtation for A consists of n+1 points t, < t2 < ...

< tn+1 in S and corresponding coefficients el, a2 , ... an+1 so that

n+1
Ap Z aiJ p(tJ) , all p C Wn

J-1 n

and
n+1

IM - I

In other words, writing It] for the linear functional of evaluation at t , such a

canonical representation provides us with an extension
n+1

a It.]

of A from in to all of C(S) :- Banach space of continuous functions on S , and this
n

extension has the same norm (on C(S) ) as does X (on w .
n

We will give a constructive proof later on of the existence of such a canonical

representation for our particular A . Taking this for granted (or referring for it to

Rivlin (1974]), we note that, for the Lagrange polynomials 9. given bV
n+1 t - t iI Wt : i I I t J- t i , 1. . .n l

i j i

we must then have
n+ 1

1 (0) At E - ai  j (ti ) = a.

This implies that

n+1 t
aj = i-t t.-t----- , all J

i 2 i
i*j

hence all coefficients are nonzero if, as we assume, 0 does not lie in S F ?urther,
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a Oj+1 0 iff t 1 0 < tj+1

If now p* is an extremal for X , then we have

n+1 n+1 (n+1
IXiI = ),p = a " p (t.) E a hj p (t.)I ' < 1. Ip Il = IXi,

j=1 ] j=1 2 j=1

so equality must hold throughout this relationship. In particular,

sign( tj) p II = 1 , all j

This pins down p* uniquely once we know all the tj's Explicitly,

* n+1

p = 7 sign(X (0)) £
j=

Thus, for n > I p is not just a constant, therefore Theorem 2.15 of Rivlin [1974!

shows that the points t I, ..., tn+ I are uniquely determined.

If now 0 lies to one side of [t1'tn+1] , then it follows that p* alternates on

tl ... , tn+1 , hence p is necessarily a multiple of the Chebyshev polynomial for

S f[tltn+i] . Further, Tp*(t)I > 1 for t not in (t1 ,tn+1] . We conclude that in tne

case of particular interest to us, namely when 0 is in the convex hull of S , there must

be some k for which

tk < 0 < tk+1

This shows our assertion at the beginning of this section that, in general, Pn need on,'

alternate on n points in S . Further, for tk < t < tk+ ,

n+1

p*(t) = Z (sign(kj(0))*j.(t) = (sign(Zj(t))).j(t)
j=1 2

= ; jZ.(t) j > S Z, it) =
2 1

if n > I . Consequently, then

tk = b := max S n(--,] , and tk+ = c s in S [0,-)

We gather these various facts in the following theorem, for the record.

Theorem I Assume that S is compact and does not contain 0 , and n 1 1. Then

(a) X has a unique canonical representation, and aj = l isj t /(t -t '

-5-



(b) Correspondingly, X has a unique extremal, and this is given by

n+1 t - t.
p Z sign(i(0)) 1 £ with i (t) = It. , all j

1=1 i*J 3 t

If, in addition, 0 is in the convex hull of S , then

(c) tk < 0 < t k+1 for some k • Further

(_)kj , j=1.k

p (t.) =

(-J
+  

j=k+1,...,n+1

and P*(t) > 1 for tk < t < tk+1  , hence tk = max Snl[- ,0I and tk+l = min Sr[0,-)

We pointed out earlier that Pn 
= 

p*/p*(0) could also be obtained as the error in the

Chebyshev approximation to 1 from the subspace {Zn 8 tj} . This subspace forms a Haar

I 3 .Ti usaefrsaHa

set on S as long as S does not contain 0 . We could therefore have obtained the above

characterization from general criteria such as Kolmogorov's criterion, but the derivation

would not have been any simpler. We note that, while Pn is in general not (a multiple of)

the Chebyshev polynomial for S , it is always a multiple of a Zolotarev polynomial since

its alternations over n points characterize it as the error in a best approximation to

n n-18nt  
+ n t from 72n n-i n-2

3. Remes algorithm for the extremal polynomial We begin with a statement of the

algorithm. In it, we use the abbreviations

b := max Sr)(--,0] c := min S(1[0,-)

introduced earlier.

Remes algorithm for the extremal polynomial

1. Choose t 
= 

(t } =+1in S , strictly increasing, and with tk = b, tk+1 = c for some
3 j=1 k t1 c

k.

2. Set P Zn+isign(L ,
(0 ))  

X , with Xj(t) := H t.(t-t.)/(t.-t), all j .
3=i 1 3 1)t 1 3-

3. Set t in S , := max q anI construect s by

n. -

vw



t for j=k,k+1
the first of the possibly two maxima of p(t.)p in [tj,t+] S

j1j+1
for j=1,...,k-1,k+2,...,n+1

Y 4. Choose t from s as follows:

(a? if p(t0 )p(tl) < -1 , then t := (to, s , Sn), and increase k by 1

(b) if P(tn+2)P(tn+1) < -1 1 then t := (S, ... ,I Sn+1, tn+2) , and decrease k by 1.

(c) otherwise, t :=s

5. Set t :=

6. Iterate steps 2 through 5

Theorem 2 The sequence of polynomials produced by the above Remes algorithm

converges to p

Proof We first note that the algorithm is well defined at step 4 in that only one of

the alternatives (a) and (b) is possible. Indeed, if both (a) and (b) were to occur, then

p would alternate on t0 , ... tk, tk+ 2 ,.  tn+2 , and this is not possible for a

polynomial of degree n or less

As to the convergence, denote by p the polynomial obtained from p after one

iteration, i.e., the polynomial constructed from the sequence Z obtained at step 4 . We

claim that 1 < p(t) 1 p(t) for any t in (b,c) and that strict inequality holds here

unless t t . The first inequality we already observed earlier (for Pn). As to the

second, we have

(_)fjk p(t.) 1 z -jk(t) for j=1,2,....k

j-1-1 (_)j-k-l1 -
-) -- pt. = 1 C-) p(t.) for j=k+1,...,n+1:3 :3

by construction. This implies that, for h < t < c

n+1p(t) - p(t) = E p7 9  - ( J)) (t) = - :p(t - p( ,l (~j

j~l

and equality occurs only if p = p on the n+1 points t, ... , tn+ I , i.e., only if

p= p

-7-
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We conclude that the sequence generated by the Remes algorithm decreases monotone]! on

(b,c), yet is bounded below there. Hence it converges, uniformly on any finite interval, to

some polynomial p . This polynomial is then a fixed point of the map T in r' defined

by

T : -- p.

it being is straightforward to show that T is continuous. But this says that p is the

desired extremal.

4. Efficient computation of the parameters We were led to study this problem by the

work of Roloff [1979] where estimates of the parameters are provided. A result of Roloff's

states that the zeros of Pn are approximately distributed in S in a proportion which is

independent of n . One might hope that this proportion is determined by measure, i.e., a

subinterval of S containing 1/10 the length of S contains about 1/10 of the zeros of

Pn " We use this to obtain the initial guess (in step 1) for the Remes algorithm but we

also note that this approximate distribution of zeros of Pn is not especially good.

Rather, there is also a tendency for the zeros to be distributed equally among the

intervals which make up S and the actual distribution resulting from these conflicting

tendencies is not easily predicted.

The Lagrange basis for n is especially suited for the efficient and stable
n

implementation of the Remes algorithm because one can obtain the polynomial p associated

with the current point sequence t without any computation, because the basis is well

conditioned near the optimal t , and because, in the end, the zeros of Pn= p*/P0

are particularly easily obtained from this form.

For efficiency in evaluating p away from t one should express p as

n+1 n+1
P(t) n (t-tj E a /(t-tj

Jr1 j=1

where

a: p(t.) / R (t -t
i*j

-8-



woul- be calculated once and for all. Also, the derivative of a, I -

computed by

pI(t m  (tm-t) m n

Sm jm tm j

The interior local extrema of p are estimated by paraholc interr,,lati-

step, the unique extremum x* , say, of the parabola matchina p at t2 , t' , r .

found, with x - tj or tj+ I  depending on the sion of n' . The%,.i ., r ,

the parabola matching p at tj, tj, and x is ther, takern as the suitable a: ,yr-,.

to the desired local extremum of p . This is a version of the s-:andar tch21oe-,

locating local extrema for use in the Remes algorithm; it is sufficientlv ac.ra- fsr

quadratic convergence of the algorithm. Note that in our particular situati(::.

need to make a global search for extrema a5 we know exactly where all the extre-r.a r .70i*I
Once the extremal polynomial p* is found sufficiently accurately, ther :7-

fcund by the Modified Regula Falsi. The zeros are already bracketed bv t!-., 7 >,

one which is outside the interval [t,,t,+,1 . This one may be to the left >ir-J

[tj,tn+1] and may actually be at infinity. We make the transforlr.at on x

apply the same method to [xlxnl1l .

Maehly's second method (see Maehly [1963 ) is an alternative methor - .

Pn . Its attraction is that it operates directly on the representation -

j= (1 - zt) and thus does not need the second phase, the computari'

judge this approach to be less efficient overall because of the a le '- w f r

the parameters zj of the new polynomial each time t is rerlace Iv t.

involves the solution of n+1 simultaneous equations with a full z,>o e.

have not tried this approach; see Dunham [19661 for some remarks concer !-, -

convergence of this method.

5. Properties of the parameters and convergence rate of the iteration

of particular examples of the extremal polynomials shows that t i, not, io-,. -

belono to orthouonal polynomial families anI that to-c art, .'-t '. I

............
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recurrence relation. It follows from a classical result of Fekete (see Widom [1969]) that

1/n
lip I converges as n tends to infinity . Consequently, convergence of Richardson's

n

first order method with these parameters is geometric. Of course, in practice, one is not

likely to use the parameters from Pn' Pn+1' Pn+2' ... in sequence, but is likely to use

the parameters for a fixed n cyclically. One still obtains geometric convergence, but

examples (such as seen below) show that n should be rather large in order to exploit the

method's potential fully.

In order to judge the convergence rates one could expect, we present in Figure 1 the

graphs of p on the interval ,[b,c] for the case S = f-1,-.8] [.2,1] and for various

values of n . Recall that P n = p*/p*(O) , hence lipnII = 1/p*(0) . Further, it is

worthwhile at this point to realize that a linear change in the independent variable

leaves Pn essentially unchanged. In other words, if this particular S is obtained from

some interval pair S
# 

= [a#,b#l [c*,d#
] 

by the linear change t = f(t#), so that -1 =

f(a ), -. 8 = f(b#), etc., then the polynomial P for S
# 

is simply P .f ' In
n n

particular, then lIP II = i/p (f(O)) , thus 1/p*(t) runs through the possible values of
n

such lIP 41 as t runs between -. 8 and .2 . Thus as one moves from h = -. 8 to
n

c = .2 , along one of the curves for fixed n , one sees the effect on the achievable error

reduction of the location of the origin between the two intervals comprising an interval

pair. Note that the rate of convergence becomes 1 and the linear system becomes

(possibly) singular as f(0) approaches b or c

Figure 2 shows the dependence of the rate of convergence on the relative sizes of the

two intervals which make up S . A contour plot is given of the maximum possible rate of

convergence as b and c vary while a = -1 and d = 1 remain fixed. This maximum rate

occurs at the point where p* is at a maximum (between b and c) which depends on h

and c . This rate approaches I as c-b approaches 0 and becomes nuite fast as h

and c approach -1 and -1, respectively.

-11-
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rigure 3 indicates the effect of near singularity of the linear system on the rate of

convergence. Again for S an interval pair and for 10 parameters, we plot contours of the

logarithm of the slope of p at t - c . The larger this slope, the less the rate of

convergence is degraded by the origin being close to c

Both Figures 2 and 3 exhibit a somewhat erratic behavior due to the fact that the

number of t,1s in each interval is a discrete function of b and c . This euqqests that

it would be quite difficult to obtain accurate and simple approximation formulae for the

parameter distribution.
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APPENDIX

We list here a Fortran program, written by Frederick Sauer, which realizes the

Reme algorithm, given in Section 3, for the extremal polynomial, for the special
case that 8 consists of two (nontrivial) intervals. A more general version which

allows for S to consist of finitely many intervals, some or all of which may even
be trivial, has also been written by Frederick Sauer who will submit it for

publication separately.

PARAMETER DEGREE-25,DEGP1=DEGREE+ I,DEGP3-DEGREE+3

REAL X(DEGP3),XTILDE(DEGP3),ALPHA(DEGP1),PROD(DEGPI)
INTEGER N,R,IPRINT,MAXIT

DATA IPRINT,MAXIT, N ,EPS2 ,EPS3 ,EPS4
I / 2 , 20 , 10,1.E-2 ,I.E-3 ,I.E-4/

CALL SETUP(N,-1.,-.8,.2,1.,X,R)
CALL EXTREM(X,N,R, IPRINT,MAXIT,EPS2,EPS3,EPS4,XTILDE, ALPHA,

I PROD,PZERO)
STOP
END

SUBROUTINE EXTREM (X,N,R,IPRINT,MAXIT,EPS2,EPS3,EPS4,XTILDE,
I ALPHA,PROD,PZERO)

C THIS SUBROUTINE FINDS A POLYNOMIAL WHICH IS AN EXTREMAL OF THE LINEAR
C FUNCTIONAL WHICH IS THE POINT EVALUATION AT THE POINT ZERO. THE
C POLYNOMIAL IS CHOSEN FROM THE SPACE OF POLYNOMIALS OF DEGREE LESS
C THAN OR EQUAL TO N, WHERE N IS A PARAMETER SET BY THE USER. THE NORM
C ON THIS SPACE IS DEFINED TO BE:
C
C NORM(P) - MAX(P(T) : (X(1) .LE. T .LE. X(R+I)) OR
C (X(R+2) .LE. T .LE. X(N+3)))

C
C ***** INPUT .
C X - AN ARRAY OF DIMENSION N+3 WHICH CONTAINS THE STARTING VALUES

C OF THE ABSCISSAE IN X(2), X(3), ... , X(N+2). IN X(l) AND
C X(N+3) SHOULD BE THE ENDPOINTS (I.E. A AND D RESPECTIVELY)
C
C N - THE DEGREE OF THE POLYNOMIAL.
C
C R - SUCH THAT X(R+I)=E AND X(R+2)-C IN THE PROVIDED ARRAY X.
C X(1),X(R+I),X(R+2),X(N+3) DEFINE THE INTERVALS FOR WHICH THE

C NORM OF THE POLYNOMIAL IS CALCULATED. SEE DEF. OF NORM ABOVE.
C
C IPRINT - -- I SUPPRESS ALL PRINTING. PZERO WILL NOT BE CALCULATED
C -O PZERO = P(0) WILL BE CALCULATED AND PRINTED.
C -I ALSO, THE ROOTS OF THE POLYNOMIAL WILL BE CALCULATED

C AND PRINTED
C -2 ALSO, FOR EACH ITERATION A MESSAGE WILL BE PRINTED
C
C MAXIT - THE MAXIMUM NUMBER OF ITERATIONS ALLOWED.
C
C EPS2 - A TOLERANCE USED TO CONTROL THE MAJOR ITERATION. THE
C ROUTINE WILL STOP WHEN THE MAXIMUM CHANGE OF ANY
C PARTICULAR ELEMENT OF X CHANGES BY LESS THAN EPS2.
C

-15-



C EPS3,EPS4 - TOLERANCE PARAMETERS USED BY SUBROUTINE REGULA.
C THE CALCULATED VALUE OF THE ROOT, XRT, WILL BE
C SUCH THAT XRT WILL BE WITHIN EPS3 OF AN ACTUAL
C ROOT OR ABS(P(XRT)) WILL BE LESS THAN EPS4.
C
C ***** WORKSPACE *
C XTILDE - AN ARRAY OF DIMENSION AT LEAST N+3.
C ALPHA - AN ARRAY OF DIMENSION AT LEAST N+I.
C PROD - AN ARRAY OF DIMENSION AT LEAST N+I.
C
C ***** OUTPUT e
C X - THE FINAL VALUES OF THE ABSCISSAE OF THE EXTREME POINTS
C CALCULATED BY THIS ROUTINE.
C R - THE FINAL VALUE OF R AS DESCRIBED ABOVE.
C ALPHA, PROD - THE FINAL VALUES OF ALPHA AND PROD AS CALCULATED
C BY SUBROUTINE ALCALC ARE RETURNED IN THESE ARRAYS IF
C IPRINT IS NOT EQUAL TO -1.
C PZERO - VALUE OF EXTREMAL POLYNOMIAL AT 0.
C XTILDE - CONTAINS THE RECIPROCALS OF THE ROOTS OF THE POLYNOMIAL IF
C IPRINT-I OR 2. XTILDE(1) CORRESPONDS TO THE ROOT LYING OUT-
C SIDE THE INTERVAL. IT WILL BE SET TO ZERO IF THE ADDITIONAL
C ROOT DOES NOT EXIST.
C
C e NOTE: THIS SUBROUTINE EXPECTS A STARTING GUESS FOR THE VALUES

C OF X, AND A VALUE FOR R. THIS CAN BE ACCOMPLISHED BY A CALL TO
C SUBROUTINE SETUP.
C

INTEGER R,N,NPI,ITER,IPRINT,MAXIT,ISET,NP3,NP2,RP1,RP2

REAL X(1 ),XTILDE(I),ALPHA(I),PROD(I)
INTEGER I,J

REAL EPS2,SIGN,SGSL,ERR,EPS3,PZERO
NP1 - N + 1
NP2 - N + 2
NP3"N+3
ITER - 0
IF (N .LE. 1) RETURN

40 IF (IPRINT .EQ. 2) WRITE (6,640) ITER,(X(l),I-2,NP2)

640 FORMAT('OAFTER ',13,1 ITERATIONS THE POINTS X ARE',/(lX,10E13.5))
RP1-R+I

RP2-R+2
C GET THE INTERPOLATING POLYNOMIAL

CALL ALCALC(X,NPI,R,ALPHA,PROD,XTILDE)
XTILDE(l)-X(1)

SIGN-i.
IF (MOD(R,2) .EQ. 1) SIGN--I.
XTILDE(NP3)-X(NP3)
ISET - 0

C IF ISET IS CHANGED THE RESULTING X'S MUST BE SHIFTED.
IF (X(I) oEQ. X(2)) GO TO 45

CALL EVAL (X(1),X,ALPHA,NPI,VAL)
IF (VAL*SIGN .GT. 1.) ISET--1

45 DO 80 1-2,NP2
IF ((I .EQ. RPI) .OR. (I.EQ.RP2)) GO TO 70

J1 -1
CALL DERIV(X,J,PROD,ALPHA,NPI ,SLOPE)
SGSL I.
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IF (SLOPEeSIGN .GT. 0.) SG'L=-1.
IF (SGSL .EQ. 1) 7-1+1
IF (SLOPE .NE. 0.) GO TO 60

XTILDE ()X (1)
GO TO 80

60 SLOPE--ABS(SLOPE)
CALL INTERP(I,J,SIGN,X,ALPHAo'PI,SLOPE,SG L,XT!LDF11
SIGN--SIGN

GO TO 80
70 XTILDE(I)=X(I)

SIGN-I.
80 CONTINUE

IF (X(NP2) .EQ. X(NP3)) cO TO 85
CALL EVAL(X(N+3), X, ALPHA, N 1,7VAL)
IF (VAL*SIGN .LT. -I.) ISFT-1

C SET UP X FOR NEXT ITERATION
85 R - R - ISET

ERR-O.
DO 90 I - 2,NP2

J = ISET + I

DIFF - ABS( X(I) - XTILDE(J)

IF (DIFF .GT. ERR) ERR = DIFF
90 X(I) = XTILDE(J)

IF ( ERR .LT. EPS2) GO TO 100
ITER - ITER + 1

IF (ITER .LT. MAXIT) GO TO 40
WRITE (6,650) MAXIT

650 FORMAT( 'OMAXIMUM NUMBER OF ITERATIOIS EXCEFrED, MA, !'

100 IF (IPRINT .EQ. 2) WRITE (6,660) (X(I),I=2,NP2,

660 FORMAT('OAFTER FINAL ITERATION THE POINTS X APE',/(lXl T1 .

IF (IPRINT .EQ. -1? RETURN

C EVALUATE EXTREMAL POLYNOMIAL AT 0
CALL ALCALC(X,NP1,R,ALPHA,PROD,XTILDE)
CALL EVAL(0.,XALPHA,NP1,PZERO)

WRITE(6,670) PZERO
670 FORMAT('OP(0) =',E20.8)

IF (IPRINT .EQ. 0) RETURN
C FIND THE RECIPROCALS OF THE ZEROS OF THE EXTREMAL FrTY'.w:'

CALL FINDZR(X,ALPHA,NPI,R,EPS3,EPS4,XTILDE)
RETURN

END

SUBROUTINE ALCALC(X ,M,R, ALPHA,PROD,WORK)
C THIS SUBROUTINE CALCULATES THE COEFFICIENTS AIlPHA ANT VFtI:"
C USED TO EVALUATE THE LAGRANGE INTERPOLATING POLYNo[t., "','

C DERIVATIVES

C

C ***** INPUT *

C X - THE ABSCISSAE OF THE POINTS To WHICH THr 1 iY',,
C FIT ARE STORED IN X(2), X(3), X(4), ... , X(v-1).

C M - THE ORDER (DF.GRFF + 1 ) OF THE INTE1RP"iATIN~ P" "

C R - IS SUCH THAT X(T +1) = r, x(D+?r =

C
C **** OUTPUT *

C ALPHA - AN ARRAY Or rI NSIN M 7riCe TF ' " "
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c 1

C ALPHA(i) P(X(1*1))/ PRODUCT (X(I+1)-X(J+1))
C J-1
C 3 *NE.*I

C WHERE PCX) IS~ THE VALUE OF THlE POLYNOMIAL AT X. IN PARTICULAR,
C (-1)'*(I-R) IF I .LE. R

c P(X(14lfl=

C C)
4
(+-)IF I .GT. R

C PROD - AN ARRAY OF I)IMENSION M WHICH IS USED TO STORE THE VALUES
C '4

c PROD(I) PRODUCT (X(T+l) - X(J+1fl
C J-1

C 3NE. I
C
C *&* WrORKSPArF *.

C WORK - AN ARRAY 01- DIMENSION M4.

INTEGER R,M,I,J,MMI4

REAL X(1),ALPNAfM),PROD(4) ,WORK(M),XI,P,SIGNI

1414 14-1

SIGN I 1

rr(MOD(R,2) .E). 0) SIGN -- 1.

Do 10 1-1,1414
10 WORK(T) - X(1+2)

DO 30 J-1,M
P - 1.
XI - X(J+1)

DO 20 1=1,11
20 P - P*(XI-WORC(Il

PROD(J; : P

WORK(J) X1

IF (3 .FQ. Q+l) SIrN =-SIGN

ALPHA(J) =SIGN/P

30 FIGN =-SIC4J

RETURN

END

SUPRO11TINE FVlAeT~vAT.PTA,',P)
c THIS SUBROUTINE EVALUATES THE VALUE OF THE LAGRANGE INTERPOLATING

C POLYNOMIAL AT THEF POINT T.

c

C *** INP11T

C T -POINT AT WliII'H POLYNOMIAL IS TO HE EVALtIATFD.

" X ARRAY roNTI pJr TPOTmS AT WHICH 31W POLYNOMIAL IS KNOWN.

C ALPHA - ARRAY OF niMFNSI('N M WHICH "AS THE rOEFFIcIENTS CALCIULATED)

c qY StURY(WyrINEF AL(*ALC7.
M ONE PIT THE DECRFF (w THE PO)LYNOMIAL,.

P -THE VAI)'?F P' Tf1-: I,LYNrM1NIAl T.

r

r

'FM. KM , AIA')'A(N) ,~r-,IFC;



C
C = 1,

P=0.

DO 10 I = 1,M

DIFF = (T-X(I+I))
IF (DIFF .EQ. 0.) GO TO 20
C = C*DIFF

10 P = P + ALPHA(I)/DIFF
P = P*C

RETURN

20 SGN -1.
IF (MOD(M-I,2) .EQ. 1) SGN = -1.
P = SIGN (l., ALPHA(I)*SGN)
RETURN
END

SUBROUTINE DERIV(X,IPROD,ALPHA,M,D)

C THIS SUBROUTINE EVALUATES THE DERIVATIVE OF THE LAGRANGE INTER-

C POLATING POLYNOMIAL AT THE ITH POINT OF X.
C
C ***** INPUT ****
C X - ARRAY CONTAINING POINTS AT WHICH THE POLYNOMIAL IS KNOWN.
C I - THE DERIVATIVE IS TO BE EVALUATED AT X(I+1)
C PROD - AN ARRAY OF DIMENSION M WHICH CONTAINS COEFFICIENTS CALCU-
C LATED BY SUBROUTINE ALCALC.

C ALPHA - AN ARRAY OF DIMENSION M WHICH CONTAINS COEFFICIENTS
C CALCULATED BY SUBROUTINE ALCALC.
C M - ONE PLUS THE DEGREE OF THE POLYNOMIAL.
C
C ***** OUTPUT **

C D - THE VALUE OF THE DERIVATIVE AT X(I+1).
C

INTEGER I,M,J
REAL X(1),PROD(M),D,XS,ALPHA(M),AS

XS = X(I+1)

AS = ALPHA(I)
D= 0.

DO 10 J=I,M
IF (J .EQ. I) GO TO 10

D = 0 + (AS + ALPHA(J))/(XS-X(J+1))
10 CONTINUE

D = D*PROD(I)

RETURN

END

SUBROUTINE INTERP (I,J,SIGN,X,ALPHA,M,SLOPE,SGSL,XMIN)

C THIS SUBROUTINE FINDS AN APPROXIMATION TO XMIN WHERE XMIN IS SUCH

C THAT:

C
C StGN*P(XMIN)=MIN(SIGN*P(T):MIN(X(I),X(J)).LF..T.LE. MAX(X(I),X(J)))

C

C WHERE P(T) IS THE INTERPOLATING POLYNOMIAL AT THE POINT T.
C

_1q-



C INPUT

C I,J - INTEGERS SO THAT X(I) AND X(J) DEFINE THE ENDPOINTS OF THE
C INTERVAL TO BE SEARCHED FOR XMIN.
C SIGN - REAL VALUE, EITHER +1. OR -1. SO THAT SIGN*P(X(I)) = -1.
C X - ARRAY OF DIMENSION M+2 WHICH CONTAINS THE ABSCISSAE OF THE
C POINTS USED FOR LAGRANGE INTERPOLATION.
C ALPHA - COEFFICIENTS FOR LAGRANGE POLYNOMIAL.
C M - ORDER (DEGREE PLUS ONE) OF INTERPOLATING POLYNOMIAL.
C SLOPE - -(ABS(P' (X(I))))
C SGSL - HAS THE FOLLOWING VALUE
C +1. IF X(I) .LT. X(J)
C -1. IF X(I) .GT. X(J)
C
C ***** OUTPUT *****

C XMIN - THE APPROXIMATION OF XMIN CALCULATED BY THE ROUTINE
C
C ***** METHOD *****
C LET P(T) BE THE LAGRANGE INTERPOLATING POLYNOMIAL AT THE POI. T T.
C S, THE FIRST APPROXIMATION OF XMIN, IS THE MINIMUM OF THE PARABOLA
C DETERMINED BY P(X(I)), P(X(J)), AND P'(X(I)). XMIN IS THEN THE
C THE POINT AT WHICH THE PARABOLA INTERPOLATING P(X(I)), P'(X(I)),
C AND P(S) TAKES ON ITS MINIMUM.

C

INTEGER I,J,M
REAL SIGN,X(1 ),ALPHA(M) ,SLOPE,SGSL,XMIN
REAL S,XMAX,F,XI,XT,DIFF2
XI - X(I)
IFIRST,1
S- ABS(XI - X(J))
XMAX = S

F" 1.
C CHECK IF END POINT

IF ((J .NE. 1) *AND. (J .NE. M+2)) GO TO 10
IF (X(J) .NE. XI) GO TO 5

XMIN"XI

RETURN
C CALCULATE INTERPOLATING POLYNOMIAL AT X(J)

5 XT-X(J)
CALL EVAL(XTX,ALPHA,M,F)
F-F*SIGN

C USE FOR FIRST STEP THE SLOPE AT X(I) AND THE POINT S.

10 DIFF2- ((F+1.)/S - SLOPE)/S
IF (DIFF2 .LE. 0) GO TO 999
S- -SLOPE/DIFF2/2.

IF (S *LE. XMAX) GO TO 30
XMIN - SGSL*XMAX + XI

RETURN
30 XT- SGSL*S + XI

CALL EVAL(XT,X,ALPHA,M,F)

F- SIGN*F
IF (IFIRST oNE. 1) GO TO 999
IFIRST-2
XMAX - S

GO TO 10
999 XMIN- XI + SGSL*S

RETURN
END
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SUBROUTINE FINDZR(X,ALPHA,M,P,EPS3,EPS4,WOPK)

C THIS SUBROUTINE FINDS THE ZEROS OF THE LAGrPANGE IN TEFppLATM!G OrLiy-

C NOMIAL USING THE MODIFIED REGULA FALSI METHOD. THE RESULTS ?p-

C PRI 'TED OUT.

C *k*** INPUT *****

C X - ARRAY CONTAINING THE ABSCISSAE OF THE DATA POINTS.

C ALPHA - ARRAY CONTAINING COEFFICIENTS CALCULATED BY SUPRO'T

C ALCALc.

C M - ORDER OF LAGRANGE POLYNOMIAL.

C R - INTEGER SUCH THAT ZERO LIES IN THE TNTERVAL X(P+1) TO X(P*2

C EPS3,EPS4 - TOLERANCE PARAMETERS USED BY SUBROUTINE PEGImA. -'!F'

C CALCULATED VALUE OF THE POOT, XPT, WILL EE 9S1CH ':-AT

C XRT WILL BE WITHIN Er-t3 OF AN ACTUAL FOOT OP

C ABS(P(XRT)) WILL RE LESS THAN EPS4.

C

C ***** WORKSPACE

C WORK - AN ARRAY OF DIMENSION AT LEAST M.
C

INTEGER M,R,J,I,MM1

REAL X(1),WORK(M),ALPHA(M),SIGN,EPS3,EPS4

REAL A,B,FA,FB,SIGN1,SUM,XRT

EXTERNAL EVAL, EVALI

MMl=M-1
SIGN = 1.
IF (MOD(R,2) .EQ. 1) SIGN=-1.

SIGNi = SIGN

DO 20 J=2,M

IF (J .EQ. R+l) GO TO 20

A X XtJ)

B X(J+1)

FA = -SIGN

FB = SIGN

CALL REGULA(EVAL, A,B,FA,FB,X,ALPHA,M,EPS3,EPS4,XPT)

SIGN=-SIGN

I=J

IF (J .GT. R+l) I=J-1

WORK(I) = XRT

20 CONTINUE

WRITE (6,620) (WORK(I),I=2,MM1)
620 FORMAT('OTHE ROOTS LYING IN THE INTERVAL (X(2),XfM+1)) AF7',

1 /(1X,5E20.7))

DO 21 J=2,M

21 WOPK(J) = l./WORK(J)
C FIND ROOT OUTSIDE OF INTERVAL IF IT EXISTS

SUM = 0.

ALMAX = 0.

DO 30 I=1,M
ASSAI = ARS(ALPHA(I))
IF (ARSAL .GT. ALMAX) ALMAX ARSAL

30 SUM = SUM + ALPHA(I)

IF (ABS(SUM) .GT. ALMAX * I.F-4) GO TO 40

3 ' WRITE(6,635)

63c r'OPMAT('0THF ADDITIONAL ROoT rANNO'" nF ACCURATELY 7M["! .

1 ' OR IS INFINITE')
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W, '. )
RETuIRN

4 0 IF ( S I TM 1 N GL'. 0 To 70U

C THE ADDITIONAL ROMT 1.1 T,- THF LEFT OF X (2)

A -l ./X(2)

P -1.Fl-4

FA -SICN1l

CALL EVALI (B,X,ALPHA,M,Ffi)
IF (FA*FB .GE. ".) GO TO 35

GO TO 90
C THE ADDITTONAl. :(j S TO T!OE RIGHT OF X(M' )

70 1, I/ (AI

A I.E-4

F2-'-SICN

CALL (V".. A,,., .7;,,iA)

IF (FEN*B .CE. r, G;- (, )"

0P CALL F'C--.!LMEVAljl, A, ;,, -A, F.9, X, ALPHA, Mj, EPFS3,!Ei'54, XL'!')

WORK) 1 )=XP"

69C FORMAT) OTIIEF REC.T'R(OCA. OF' THE ArmITTONA . ry'T If; A "',
2

l

RETU RN

C THIS -'!TN.OrJTINz FINDS THlE 7I:ROl OF T11E LAGRANGl(E CLyN.l, MA.- IN>

C IN THE. INITERVAL. (A,BI. THE MODIFIED REC'ILA EALSI METHOD IS, lISEN.

C ***INPUT

C A -LEFT F' O prM' OF' INTFRVAT. TN WHTIH 7A ROOTI LIES.

C NB RIGHT F:ND Puil' F iN'iL'ITV IN WHICH A ROOPTIC

C FA THE VALTIE Of' THE ['O)LYNOM IAT, AT THE POTITT A.

C EN THE ,' ;'-: V 5'.sO'NOMI Al AT THEF PCI Nr P.

C X -ARRAY COnNTAITTOC ' !F AOSrTCFAE r)F THP D
7

\T'
1
. P0IT.!

C ALPHA - ARRAY CON'TAININGO COEFFICIEN'TS CALCULATED BY SIII)tT'INE

C EPS3,FPS4 '-TOLF.P'INCE PAMPTERS. THE CALCTIATFP VALI'F OF XRT

C WILL lit EU)Clf llT XRT WILL lIE WITHIN EP6; OF AN

C ACTUAL FOO O ARS(P(XP.T) ;WTTJL PE IEC'C THAN FPE'T.

C **'OUJTPUT

c XRT - TIrE CALf"'IFTTFO vr. !T OF THE FOOT.

REAL X1,LH(IAOVHESD4"',P,"P

EXTERNAL FCT

PVW FA

1N XPT (flP*A - '.r,*(/(PS - PA)

IF (ARS(FXPT) .LF. rf004) RETllRlI

IF I SIOI(1. ,FXPTl)*VT .CT. n. T O 12

rP EXFT

Ti" IF TONI .,F'XV'r) n, r T'' .;' . 1 FA=t"A/2.
',, 1'

:A x T



FA = FXRT

IF (SIGN(1.,FXRT)*FW .GT, 0.) FB=FB/2.

15 FW = FXRT

IF (B-A .GT. EPS3) GO TO 10

XRT
= 

(A + B) / 2.

RETURN

END

SUBROUTINE EVALI(T,X,ALPHA,M,P)
C THIS SUBROUTINE EVALUATES (T**(M-1))*P(1/T) WHERE P(1/T) IS THE

C LAGRANGE INTERPOLATING POLYNOMIAL EVALUATED AT I/T

C

C ***** INPUT

C T - POINT AT WHICH POLYNOMIAL IS TO BE EVALUATED.

C X - ARRAY CONTAINING POINTS AT WHICH THE POLYNOMIAL IS KNOWN.

C ALPHA - ARRAY OF DIMENSION M WHICH HAS THE COEFFICIENTS CALCULATED

C BY SUBROUTINE ALCALC.

C M - ONE PLUS THE DEGREE OF THE POLYNOMIAL.

C
C ***** OUTPUT

C P - THE VALUE OF THE POLYNOMIAL AT T.

C

C
INTEGER M,I

REAL X(1), ALPHA(M),T,P,C,DIFF,SGN

C

C EVALUATE THE POLYNOMIAL

C

C = 1.
P =0.

DO 10 I = 1,M
DIFF = (l.-T*X(I+I))

IF (DIFF .EQ. 0.) GO TO 20

C = C*DIFF

10 P = P + ALPHA(I)/DIFF

P = P*C

RETURN

20 SGN = 1.

IF (MOD(M-I,2) .EQ. 1) SGN = -1.

P = SIGN (l., ALPHA(I)*SON)*T**(M-1)

RETURN

END

SUBROUTINE SFTUP (N, A, S, C, D, X, P)

C THIS SUBROUTINE SETS UP THE ARRAY X IN PREPARATION FOP A CALL TO

C SUBROUTINE EXTREM.

C

C ***** INPUT *

C N - THE DEGREE OF THlE POLYNOMIAL, T) P USFED.

C A, R, C, D - INTERVAL ENDPOINTS. THE INTERVAL PAIR IS (A,B), (CP)
C

C ***** OUTPUT *

C X - AN APRAY OF DIMENSION N+3 rOpTpAfNNG THE CALCULATED VAL' ES.
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C R - INTEGER SUCH THAT X(R+I) - B AND X(R+2) - C.

c
INTEGER N,R,RM1,NMR

REAL X(1), A,B,C,D,DELI,DEL2

IF (N .LE. 1) RETURN
DELl = B - A
DEL2 = D - C
R = INT( FLOAT(N-1) * (DEL1/(DELI + DEL2))) + 1
IF (R *LE. 1) GO TO 20

RM1 = R - 1

DELI = DELl / FLOAT(RMI)

DO 10 I=2,R
10 X(I) - A + FLOAT(I-2)*DEL
20 NMR = N-R

IF (NMR .LT. 1) GO TO 40
DEL2 = DEL2 / FLOAT (NMR)
DO 30 I=I,NMR

30 X(R+I+1) = C + FLOAT(I-1)*DEL2

40 X(l) = A
X(R+l) - B
X(N+2) = D
X(N+3) - D

RETURN
END
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